일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- FedAvg
- value shaping
- 기계학습
- DP
- OSR
- 딥러닝
- OOD
- ML
- 연합학습
- Analysis
- q-FedAvg
- deep learning
- Federated Learning
- free rider
- Machine learning
- Open Set Recognition
- 머신러닝
- q-FFL
- FL
- 개인정보
- data maximization
- Differential Privacy
- OoDD
- Agnostic FL
- PPML
- Fairness
- ordered dropout
- FedProx
- Federated Transfer Learning
- convergence
- Today
- Total
목록FedSGD (2)
Federated Learning
논문 제목: Communication-Efficient Learning of Deep Networks from Decentralized Data 출처: https://arxiv.org/abs/1602.05629 이전 포스트에서, 우리는 연합학습의 근본이 되는 FedSGD와 FedAvg에 관해서 알아보았습니다. (이전 글 보기) 이번에는 해당 논문의 experiments를 분석하고, 논문의 의의 및 한계에 관해서 논의해보겠습니다. 3. Experiments 해당 논문의 experiments에서, 우리는 hyperparameter인 $C$, $E$, $B$를 어떻게 tuning하는 것이 좋을 것인지 주의 깊게 확인해야 합니다. tuning에 우선순위가 있는지, 어떠한 범위 내에서 hyperparameter를..
논문 제목: Communication-Efficient Learning of Deep Networks from Decentralized Data 출처: https://arxiv.org/abs/1602.05629 첫 paper review 포스트의 대상은 연합학습을 처음으로 언급한 논문인 『Communication-Efficient Learning of Deep Networks from Decentralized Data』입니다. 해당 논문에서 언급된 FedSGD, FedAvg 알고리즘은 지금도 연합학습 시스템의 baseline 알고리즘으로 계속해서 각종 논문에 등장하고 있습니다. 비록 나온 지 조금 지났지만, 근본적인 논문이기 때문에 영향력이 상당하여 안 짚고 넘어갈 수 없었습니다. (2017년에 논문이 ..