일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- OoDD
- 머신러닝
- ML
- Analysis
- q-FFL
- 개인정보
- deep learning
- data maximization
- Agnostic FL
- FedAvg
- FedProx
- Fairness
- DP
- 연합학습
- free rider
- OSR
- FL
- Machine learning
- value shaping
- convergence
- OOD
- Differential Privacy
- PPML
- Federated Transfer Learning
- 기계학습
- ordered dropout
- q-FedAvg
- Federated Learning
- 딥러닝
- Open Set Recognition
- Today
- Total
목록머신러닝 (60)
Federated Learning

논문 제목: Mechanisms that Incentivize Data Sharing in Federated Learning 출처: https://arxiv.org/abs/2207.04557 지난 포스트에서 free-riding에 관한 이야기를 다루면서, standard federated learning mechanism은 free-riding을 막기 어렵다는 것을 확인하였습니다. (이전 글 보기) 이번 포스트에서는 free-riding을 방지할 수 있는 방안에 관하여 살펴보도록 하겠습니다. 5. Value Shaping Mechanism (Cost를 아는 경우) Definition C [Data Maximization] 임의의 mechanism M에 대하여, 해당 ..
논문 제목: Mechanisms that Incentivize Data Sharing in Federated Learning 출처: https://arxiv.org/abs/2207.04557 지난 포스트에서 이상적인 FL mechanism이 만족해야 하는 조건에 관하여 알아본 뒤, 그러한 이상적인 상황에서는 반드시 Nash Equilibrium이 존재한다는 것을 확인하였습니다. (이전 글 보기) 이번 포스트에서는 free-riding에 관하여 살펴보도록 하겠습니다. 4. Free-Riding 만약 모든 client로부터 학습된 결과를 받는다면, 이러한 mechanism M은 [M(m)]i=v(∑jmj)으..

논문 제목: Mechanisms that Incentivize Data Sharing in Federated Learning 출처: https://arxiv.org/abs/2207.04557 지난 포스트에서, Low-cost Agent가 아닌 이상 Federated Learning에 참여하는 것이 개인의 관점에서 유리하다는 것을 확인하였습니다. (이전 글 보기) 이번에는 Federated Learning을 보다 거시적인 관점에서 바라보도록 하겠습니다. 2. Feasible Mechanism / Mechanism with Individual Rationality m:={m1,⋯,mn}, v:={v1,⋯,vn}으로 deno..

논문 제목: Mechanisms that Incentivize Data Sharing in Federated Learning 출처: https://arxiv.org/abs/2207.04557 예전에 Agnostic FL을 다루면서 Contribution Evaluation 분야를 잠깐 언급한 적이 있었는데, 이번에는 이 부분에 대해서 이야기를 해보려고 합니다. (이전 글 보기) 이성적인 client라면, "굳이 내가 나의 data를 제공하지 않아도, 충분히 (다른 사람들의 data에 기반하여) 잘 학습된 model을 받아와서 쓸 수 있잖아?"라는 생각을 할 수도 있습니다. 한두 사람만 이러한 생각을 한다면 다행이지만, 만약 다수의 client가 비슷한 생각을 한다면, 결국 model은 올바른 방향으로 학..

논문 제목: Fair Resource Allocation in Federated Learning 출처: https://arxiv.org/abs/1905.10497 지난 포스트에서 q-FFL의 solver인 q-FedSGD, q-FedAvg에 대하여 알아보았습니다. (이전 글 보기) 이번 포스트에서는 해당 paper의 experiments를 확인해보도록 하겠습니다. 우리가 살펴보아야 할 부분은 q에 따른 성능 변화, 그리고 수렴성입니다. 해당 paper의 경우 experiments가 상당히 길어서, 아쉽게도 모든 실험 결과를 다루지는 못하였습니다. 특히, meta learning에서의 application(q-MAML)은 논의하는 내용을 벗어나서 다루지 않았습니다. 세부 사항은 paper를 참고 바랍니..

논문 제목: Fair Resource Allocation in Federated Learning 출처: https://arxiv.org/abs/1905.10497 지난 포스트에서 q-FFL에 관한 이야기는 마무리지었고, 이번 포스트에서는 q-FFL의 solver인 q-FedAvg에 관한 내용을 다룰 것입니다. (이전 글 보기) 마치 FedSGD에서 FedAvg로 넘어가듯이, 우선 q-FedSGD부터 살펴보도록 하겠습니다. 7. q-FedSGD q-FFL의 핵심은 performance와 fairness 사이의 trade-off를 잘 조절할 수 있는 최적의 q를 찾는 것입니다. 다만, 특정 q∈R≥0가 어떠한 수준의 fairness와 대응하는지는 알 수 없기 때문에..