일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- OoDD
- Differential Privacy
- OSR
- Analysis
- 개인정보
- free rider
- ML
- convergence
- q-FedAvg
- PPML
- FedProx
- FedAvg
- Federated Transfer Learning
- 연합학습
- 머신러닝
- ordered dropout
- Federated Learning
- data maximization
- value shaping
- Agnostic FL
- FL
- q-FFL
- Machine learning
- Fairness
- OOD
- Open Set Recognition
- DP
- 기계학습
- 딥러닝
- deep learning
- Today
- Total
목록연합학습 (52)
Federated Learning
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 이번 포스트에서는 hyperparameter $K$와 $E$에 관한 이야기를 다룬 후, experiments를 살펴 볼 계획입니다. (이전 글 보기) 9. Hyperparameter $E$ 정하기 $\text{Theorem 2, 3}$에서 확인하였듯이, partial device participation에서의 FedAvg는 다음을 만족합니다. $$\mathbb{E} [F (W_T)] - F^* \leq \frac {\kappa} {\gamma + T - 1} \left( \frac {2(B+C)} {\mu} + \frac {\mu \gamma} {..
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 지난 포스트에 이어서 partial device participation case의 convergence를 증명하도록 하겠습니다. (이전 글 보기) $C$ term만 다르기 때문에, $\text{Scheme I}$과 $\text{II}$ 구분 없이 동시에 증명합니다. 7. Partial Device Participation Case $\text{Theorem 2}$ $\text{Assumtion 1 ~ 4}$가 성립하고, $\text{Scheme I}$을 사용한다고 가정하자. (즉, $\text{Assumption 5}$가 성립한다고 가정하자.) ..
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 지난 두 개의 포스트를 통해, 우리는 full decive participation case에서 FedAvg의 convergence를 확인하였습니다. (이전 글 보기) 이번 포스트부터는 partial device participation case를 살펴볼 것입니다. 마찬가지로 증명 과정이 다소 길기 때문에 두세 편에 나누어서 작성될 예정입니다. 5. Assumtions - (2) 이전 포스트에서 살펴보았듯이, Sampling 과정에서 replacement가 허용되는지(FedProx 논문에서 제시한 Sampling 기법) 혹은 그렇지 않은지(해당 논..
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 지난 포스트에 이어서 증명을 진행하겠습니다. (이전 글 보기) 3. Key Lemmas for $\text{Theorem 1}$ - 이어서 $\text{Lemma 2}$ [Bounding the variance] $\text{Assumption 3}$이 성립한다고 가정할 때, $\mathbb{E} [||g_t - \bar{g_t}||^2] \leq \sum_{k=1}^N p_k^2 \sigma_k^2$이다. $\text{Proof}$ 정의 상 $g_t = \sum_{k=1}^N p_k \nabla F_k(w_t^k, \xi_t^k)$, $\bar{..
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 지난 포스트에서, 우리는 full device participation case에서 FedAvg의 convergence analysis를 진행하기 위한 사전 준비를 마쳤습니다. (이전 글 보기) 이번 포스트에서는 해당 내용에 관한 증명 과정을 다루도록 하겠습니다. 증명 과정이 다소 길기 때문에, 두세 편으로 나누어서 게재할 예정입니다. 3. Key Lemmas for $\text{Theorem 1}$ 우선, 증명에 앞서 추가적인 notation을 언급하도록 하겠습니다. (이는 증명 과정에서만 사용됩니다.) $\bar{v}_t := \sum_{k=1..
논문 제목: On the Convergence of FedAvg on Non-IID Data 출처: https://arxiv.org/abs/1907.02189 지난 포스트에서, 우리는 model aggregation method의 convergence를 엄밀하게 증명한 첫 논문인 FedProx에 관하여 알아보았습니다. (이전 글 보기) heterogeneous한 구성에서 FedProx가 잘 작동한다는 것은 알 수 있었지만, FedAvg의 convergence에 관한 명확한 이야기를 들어볼 수 없었다는 점은 조금 아쉽기도 했습니다. 이번에 살펴볼 논문이 이에 대한 대답을 줄 수 있을 것 같은데, 한 번 확인해보도록 하겠습니다. 해당 논문은 (FedProx와 더불어) convergence analysis의 ..